Symposium Program

Session
Poster Session 2: Advanced Solutions for Agricultural Remote Sensing
Time:
Tuesday, 11/June/2024:
4:40pm - 5:40pm

Location: SUB McInnes Room


Poster stand numbers: 10-15

Presentations

Comparison of YOLOv7 and YOLOv8n for Tree Detection on UAV RGB Imagery

M. Kaviani1, T. Akilan2, B. Leblon1, D. Amishev1, Dr. A. Haddadi3, Dr. A. LaRocque4

1Faculty of Natural Resource Management, Lakehead University, Canada; 2Department of Software Engineering, Lakehead University, Canada; 3A&L Canada Laboratories, London, Canada; 4Faculty of Forestry and Environmental Management, University of New Brunswick, Canada



Evaluation of 1DCNN- LSTM deep learning model for Crop Classification using time series Sentinel-1 and Sentinel-2 in Google Earth Engine (A case study in Quebec, Canada)

S. Ojaghi1, A. Zannou1, Dr. Y. Bouroubi2, Dr. S. Foucher2

1Sherbrooke university, Canada; 2Financière Agricole du Québec



Real-time Detection of Currant-lettuce Aphid (Nasonovia Ribisnigri) in Lettuce with the YOLOv8-n Model using an Edge Computing System

E. Dubrûle, M. Germain, M. Bélisle, Y. Bouroubi

Université de Sherbrooke, Canada



Enhancing Surface Soil Moisture Estimation from Sentinel-2 and Landsat-8 Observations via Integrating Trapezoidal Models and Random Forest Algorithm

A. Nouraki1,2, M. Golabi1, M. Albaji1, A. A. Naseri1, S. Homayouni2

1Department of Irrigation and Drainage, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran; 2Centre Eau Terre Environnement, Institut National de la Recherche Scientifique (INRS), Quebec, Canada



Evaluating the Potential of Temperature/Vegetation Index Space in Crop Evapotranspiration Estimation at Farm Scale

M. Alavi1,2, M. Albaji1, M. Golabi1, A. A. Naseri1, S. Homayouni2

1Department of Irrigation and Drainage, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran; 2Centre Eau Terre Environnement, Institut National de la Recherche Scientifique (INRS), Quebec, Canada



Estimation of Canopy Height using Unmanned Ground Vehicle with LiDAR for Wheat Phenotyping

P. Ravichandran1, Dr. K. D. Singh1, Dr. S. D. Noble2, K. Halcro2, Dr. R. Soolanayakanahally3, Dr. K. Nilsen4, Dr. O. Molina5, Dr. H. Randhawa1, C. Workman4, S. Pahari3

1Agriculture and Agri-Food Canada (AAFC), 5403 1 Ave S, Lethbridge, AB T1J 4B1; 2College of Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, SK S7N 5A9; 3AAFC, 107 Science Pl, Saskatoon, SK S7S 1H1; 4AAFC, 2701 Grand Valley Rd, Brandon, MB R7C 1A1; 5AAFC, 101 Rte 100 #100, Morden, MB R6M 1Y5